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1 Introduction

The problem of graph clustering is to detect hidden “communities” in large
networks: typically this implies partitioning the vertices of the network into
separate groups, such that each group has many edges within it, and not too
many edges to the other groups. Graph clustering is a staple in the analysis of
large graphs, such as social networks and the Internet, and also has applications
in recommendation systems and in medical diagnosis [2].

One way to formalize the problem of graph clustering is to define a random
graph model and to postulate that it is representative of real-world graphs.
The task then becomes to create clustering algorithms that provably work well
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for this model, and to study the ranges of model parameters for which good
clustering can, or cannot, be achieved.

1.1 The Stochastic Block Model (SSBM)

The simplest and best-known example of such a random graph model is the
Stochastic Block Model (SBM), which was first proposed by [6]. In this pa-
per, we will restrict ourselves to the symmetric, 2-community version of the
Stochastic Block Model, although there exist generalizations:

Definition 1 (Stochastic Block Model). We sample an n-vertex graph G from
the Stochastic Block Model distribution SSBM(n, p, q) as follows: Choose vertex
labels Xn uniformly from {−1,+1}n. Given Xn, let every edge (i, j) with i < j
be in G independently of the other edges, with probability given by

P[(i, j) ∈ E(G) | Xi = Xj ] = p,

P[(i, j) ∈ E(G) | Xi 6= Xj ] = q.

More informally, the SSBM has two hidden communities of roughly equal size
(vertices with label +1, versus vertices of label −1). Within each community,
each pair of vertices is connected with probability p, and between communities,
each pair of vertices is connected with probability q. The goal of a clustering
algorithm for the SSBM is to partition the vertices of G ∼ SSBM(n, a, b) into two
groups that align with the two communities {v : Xv = +1} and {v : Xv = −1}.

Notice that if p = q, then we recover the Erdös-Rényi distribution G(n, p),
and hence it is statistically impossible to recover the hidden clusters, because
the graph G becomes independent of the vertex labels Xn. And if p = 1 and
q = 0, then recovery becomes simple: G will have two connected components
corresponding to the two hidden clusters.

1.2 The Geometric Block Model (GBM)

In this paper we will also consider a new random graph model, proposed by my
advisor Emmanuel Abbe, which we will call the Geometric Block Model. This
model has several parameters that can be tuned as desired, but for clarity we
will present and analyze a simple definition:

Definition 2 (Geometric Block Model). Let γ+, γ− : Rd → [0, 1] be distribu-
tions of points on Rd, for some dimension d. We sample an n-vertex graph
G from the Geometric Block Model distribution GBM(n, γ+, γ−, T ) as follows:
Choose vertex labels Xn uniformly from {−1,+1}n. For each i ∈ [n], sample a
point pi from γXi

. Then, for each pair i < j ∈ [n], let (i, j) ∈ E(G) if and only
if ||pi − pj ||2 ≤ T .

In other words, the geometric block model is constructed by assigning a
binary label Xi ∈ {−1,+1} to each vertex i, sampling a point pi ∈ Rd from

2



a distribution corresponding to that label, and putting an edge between every
pair of vertices i, j whose corresponding points pi, pj are close enough.

The reason we consider the GBM is because the SSBM has certain properties
that can make it somewhat unrealistic in many settings. For instance, in the
“sparse” regime of the SSBM, when the expected degree is constant, there will
only be a constant number of triangles u, v, w in expectation. Indeed, most small
neighborhoods of vertices in the SSBM will be trees. This lack of “transitivity”
is a property that is not shared by many real networks, such as social networks.
In a social network: if u knows v, and v knows w, then there is a good chance
that u also knows v.

In contrast to the SSBM, the GBM does have this “transitivity” property: if
u and v are adjacent and v and w are adjacent, then pu and pw are close by the
triangle inequality, and therefore u and w have a good chance of being adjacent.

Variants and Hybrid Models There are several possible variants of Ge-
omtric Block Model defined above. For example, we could (1) have the connec-
tion probability between vertices i and j be a function f(d, x, y) of their distance
i and of their labels x, y, and/or (2) have k communities instead of just 2.

Notice that if we extend the model as in possibility (1), then by letting the
connection probability

f(d, x, y) =

{
p, x = y

q, x 6= y

we can recover the SSBM. Hence, we can generalize the Geometric Block Model
to be a quite versatile, and hopefully a quite realistic, random graph model that
has some of the properties of the pure SSBM and some of the properties of the
pure GBM.

For the purpose of this paper, however, we will concentrate on the following
two special cases of the GBM. Some of the tools used in our analysis of these
models can be readily extended to more general settings.

Definition 3 (Gaussian Geometric Block Model). The n-vertex, distance-D,
threshold-T Gaussian Geometric Block Model is a random variable GGBM(n,D, T )
with distribution given by GBM(n, γ+, γ−, T ), where γ± is the distribution of the
normal random variable N ((±D2 , 0), I2) on R2.

Definition 4 (Square Geometric Block Model). The n-vertex, distance-D,
threshold-T Square Geometric Block Model is a random variable SGBM(n,D, T )
with distribution given by GBM(n, γ+, γ−, T ), where γ± is the uniform distribu-
tion on the square in R2 with length-1 sides parallel to the x- and y-axes, and
which is centered at (±D2 , 0).

In the GGBM and in the SGBM, the points with label ±1 will be clustered
around the point (±D2 , 0), so two clusters will naturally arise when edges are
added between points at distance ≤ T . As D increases, these clusters of points
move farther apart, and detecting the clusters in the GGBM and SGBM will
become easier.
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The SGBM is a toy model for the GGBM, which will be easier to analyze
than the GGBM because of the piece-wise homogeneous density of points in the
SGBM. We will only refer to it in Section 4. The rest of the GBM results in this
paper will involve the GGBM.

1.3 Recovery regimes

Given a random graph model with hidden clusters, such as the SSBM or the
GBM, our primary goal is to create an algorithm R that, given a graph G
sampled from one of these distributions, assigns a label X̂ = X̂(G) = R(G) to
the vertices of G that agrees with the hidden vertex labels X = X(G).

In order to measure the quality of a vertex labelling X̂, we have to define
the agreement between two label vectors (the following definitions are adapted
from [2]):

Definition 5 (Agreement between label vectors). Let x, y ∈ {+1,−1}n be two
label vectors. Then their agreement A(x, y) is given by

A(x, y) = max
π∈S2

1

n

n∑
i=1

1(xi = π(yi)),

where S2 is the group of permutations on {+1,−1}.

We can formulate the problem of recovering the hidden clusters as the prob-
lem of finding a label vector X̂ that agrees highly with the true vertex label
vector X̂. To this end, we define the notion of “weak recovery” on a random
graph model with hidden clusters.

Definition 6. Weak recovery is solved in the SSBM (or GBM) for certain pa-
rameters, if for (X,G) drawn from the SSBM (or GBM) with those parameters,
there exists ε > 0 and an algorithm R that takes G in as input and outputs X̂
such that P[A(X, X̂) ≥ 1

2 + ε] = 1− o(1).

Essentially, weak recovery asks: given the graph and given one of the ver-
tex labels, can we guess the other vertex labels with better than the trivial 1

2
probability?

We will work with the notion of weak recovery as opposed to exact recovery,
for which we would require P[A(X, X̂) = 1] = 1 − o(1), because on the GGBM
exact recovery is not possible except when the distance between the centers of
the distributions γ± is very far apart:

Lemma 7. Exact recovery is impossible in the GGBM(n,D, T ) for D <∞.

Proof. Notice that the random graph G is the output of a channel on the points
p1, . . . , pn, so given the points p1, . . . , pn we can ignore the graph G. Even
knowing these points, we cannot reconstruct the vertex labels exactly, because,
given pi = (xi, yi) ∈ R2, the maximum a-posteriori estimator for X is the sign of
x. Since a point sampled from γ+ has a constant probability of having negative
x-coordinate, the maximum a-posteriori estimator will therefore be wrong on
each vertex with constant probability.
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For the SSBM, weak recovery is also the appropriate notion of recovery
in the “sparse” regime in which the expected degree of a node is constant:
SSBM(n, a/n, b/n) for constant a, b > 0. This is because in sparse regime, the
graph is not connected, and in particular there are many “singleton” nodes
whose labels it would be impossible to guess if exact recovery were the goal. In
fact, it is known that weak recovery for SSBM(n, a, b) is possible if and only if

(a− b)2

2(a+ b)
> 1.

This is known as the Kesten-Stigum threshold for the SBM. The conjecture
was proposed by [4], the impossibility result was proved by [9] in 2012 and the
achievability result was proved concurrently by [7] and [8].

1.4 Overview of Paper

In Section 2, we report empirical results of spectral clustering algorithms on the
SSBM and GGBM models.

In Section 3, we propose combining graph powering and spectral methods
to get recovery for the SSBM and the GBM. We prove that a closely-related
approach will work for SSBM down to the Kesten-Stigum threshold (resolving
an open question of [7]). We also report favorable empirical results from graph
powering on the GGBM.

In Section 4, we prove that weak recovery is possible in the SGBM when
D > 0 and there is high enough expected logarithmic degree. We also give
evidence that suggests that weak recovery is possible in the GGBM when D > 0
and there is high enough expected constant degree.

2 Empirical Results

A substantial part of the independent work involved implementing and testing
well-known graph clustering techniques on the GGBM and on some hybrids of
the SSBM and the GGBM. For simplicity and consistency with the rest of this
paper, we will provide a brief overview of the empirical results for the GGBM
and SSBM only.

We tested spectral methods on the following graph operators, with various
levels of pre-processing “cleaning” operations:

1. The adjacency matrix A

2. the Laplacian D −A

3. the normalized Laplacian I −D−1/2AD−1/2

4. the non-backtracking operator B

Here, D is the diagonal degree matrix.
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2.1 Empirical Results for the SSBM

It is known ([2]) that among these techniques, only the non-backtracking oper-
ator achieves weak recovery down to the Kesten-Stigum threshold of the SSBM.
We review how the other methods fare:

Adjacency Matrix This method splits the SSBM giant into (1) a small neigh-
borhood of a large-degree vertex, and (2) the rest of the vertices. See Figure
1.

Laplacian Matrix This method splits the SSBM giant into (1) a small tree
connected to the giant by one vertex, and (2) the rest of the vertices. See Figure
2.

Normalized Laplacian Matrix This method works on the SSBM giant until
the parameters are very close to the recovery threshold, when it starts to fail.
It splits the SSBM into (1) a small tree connected to the giant by one vertex,
and (2) the rest of the vertices (like the Laplacian method). See Figure 3.

Figure 1: Adjacency Matrix on the SSBM

2.2 Empirical Results for the GGBM

On the GGBM, the most successful of these methods was the normalized lapla-
cian. The other methods all failed:
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Figure 2: Laplacian Matrix on the SSBM

Figure 3: Normalized Laplacian Matrix on the SSBM

Adjacency Matrix The adjacency matrix fails on the GGBM giant: cluster
(1) is around a clump of vertices of large degree, and cluster (2) is the rest of
the vertices. See Figure 4.

Laplacian Matrix The Laplacian fails on the GGBM giant: cluster (1) is a
short tail jutting out from the rest of the graph, which is assigned to cluster (2).
See Figure 5.
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Normalized Laplacian Matrix The normalized Laplacian works well on the
GGBM giant. Indeed, Figure 6 gives an of the kind of the clustering that we
optimally want on the GGBM. The partition is roughly around the line x = 0,
which is the best that one can do even knowing the positions of the points. (It
may be possible that the Normalized Laplacian method fails when the distance
D between clusters is very small, but it is hard to tell based on computational
simulation alone.)

Non-Backtracking Matrix The non-backtracking matrix fails on the GGBM
giant: the picture is qualitatively similar to the clustering given by the adjacency
matrix. See Figure 7.

Because the non-backtracking method fails, none of above the methods works
well on both the GGBM and the SSBM down to the Kesten-Stigum threshold.
The best compromise is probably the normalized Laplacian operator, which
works well for the SSBM when the parameters are not too close to the threshold,
and which also seems to work well for the GBM. However, it would be good
to have a method that can provably work for both models, even in the hardest
regimes. This motivates graph powering, which we will present in the next
section.

Figure 4: Adjacency Matrix on the GGBM
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Figure 5: Laplacian Matrix on the GGBM

Figure 6: Normalized Laplacian Matrix on the GGBM

3 Smoothing the Graph: Graph Powering

In this section we introduce the graph powering operation. The hope is that
powering a graph and then applying spectral clustering methods to it will lead
to cluster recovery in both the SSBM and the GGBM. We prove in Section
3.1 that a closely-related smoothing method (the distance-l operator) works
for the SSBM, all the way down to the Kesten-Stigum threshold. This gives
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Figure 7: Non-Backtracking Matrix on the GGBM

strong evidence that graph powering should work on the SSBM as well. And
we provide empirical evidence in Section 3.2 that the graph powering method
works to cluster the GGBM.

Definition 8 (Graph power). Let G be an unweighted graph given by adjacency
matrix A. Its kth power is the graph on V given by the adjacency matrix

A(k) := 1(I +Ak > 0).

There is an edge between v and w in the kth power of G if and only if there
is a path of length ≤ k between v and w in G.

The intuition behind first powering the graph and then applying spectral
methods is that the influence of (1) irregularly-high-degree vertices and (2)
irregularly-low-degree vertices is reduced. The smoothing is achieved because
the value Al grows exponentially faster in l around high-degree vertices than
around low-degree vertices, but, after applying the threshold function, the value
of A(l) does not – the entries of the matrix A(l) all grow at roughly the same
rate around low-degree vertices as around high-degree vertices. This means
that spectral methods on A(l) no longer have the neighborhood of a high-degree
vertex as the second eigenvector. Nor do they cut the graph into a tail of
degree-2 vertices and the rest of the graph.

3.1 Proof: Clustering the SSBM

We will prove that spectral methods on the distance-l graph, a close relative of
the lth graph power, give weak recovery for the SSBM whenever possible. This
answers the open question of [7].
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Definition 9 (Distance-l graph). Let G be an unweighted graph. Then the
distance-l matrix C(l) is defined by

C
(l)
i,j = 1(dG(i, j) = l).

The distance-l graph is the graph with adjacency matrix C(l).

In other words, there is an edge between i and j in the distance-l matrix if
and only if i and j are at distance l in G.

Notice that the graph power and the distance-l matrix are closely related,
since for any l,

A(l) =
l∑

k=0

C(k).

We will prove our clustering result by proving that the distance-l matrix and
the length-l self-avoiding path matrix of [7] are very close in spectral norm:

Definition 10 ([7], Self-avoiding path matrix). Let G be an unweighted graph.

The length-l self-avoiding path matrix B(l) is the matrix such that B
(l)
i,j counts

the number of self-avoiding paths of length l connecting i to j in G.

Let G be a random graph distributed as SSBM(n, a/n, b/n), for constants
a, b ≥ 0, and let B(l), C(l) refer to its self-avoiding paths matrix and distance-l
matrix, respectively. Let α := (a+ b)/2 be the expected degree of a vertex, and
let β := (a− b)/2.

Lemma 11. For any l, define

M (l) = B(l) − C(l).

If l = c log n such that l < logα n
1/4, then with high probability

ρ(M (l)) = Õ(αl/2),

where ρ(M (l)) denotes the spectral radius of M (l) and Õ(f) denotes O(f) up to
poly-logarithmic factors in f .

Proof. Let E1 be the event that no vertex has more than one cycle in its l-
neighborhood. By Lemma 4.2 of [7], E1 occurs with high probability.

Suppose E1 holds. Then we can partition the vertices of the graph so that
v ∼ w iff v and w share a simple cycle in their l-neighborhoods. We postpone
the proof of the following claim:

Claim 12. Suppose E1 holds. Then for all i, j ∈ V :

(i) |M (l)
i,j | ≤ 1.

(ii) M
(l)
i,j 6= 0 =⇒ i ∼ j.

(iii) M
(l)
i,j 6= 0 =⇒ there are two length-(≤ l) paths from i to j.
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By the item (ii) of Claim 12, M (l) is a block-diagonal matrix, where each
block corresponds to an equivalence class of ∼ in the vertex partition. Therefore,
it suffices to bound the spectral norm of each block.

First, we will need to define the following event. Let E2(C) be the event
that for all vertices i ∈ V (G), for all t ∈ {1, . . . , l}, the following holds:

|{j : dG(i, j) ≤ t}| ≤ C(log n)2αt.

By Theorem 2.3 of [7], we know that there is C large enough that E2(C) holds
with high probability.

Claim 13. Conditioning on E1 ∩ E2(C), the Frobenius norm of each block is
upper-bounded by

2Cl(log n)2αl/2 = Õ(αl/2).

This is an upper bound on the spectral norm of M (l), and since E1 and
E2(C) occur with high probability the theorem is proved.

Proof (of Claim 13). Suppose by contradiction that the block corresponding
S ⊆ V has Frobenius norm > 2Cl(log n)2αl/2, where S is the set of vertices
in some equivalence class of ∼. Then let H ⊆ G be the cycle that is shared
by the l-neighborhoods of the vertices in S. Let e be an edge of H. Then for
every i, j ∈ S such that there are two length-(≤ l) paths from i to j, at least
one of the paths must contain e. Otherwise, the cycle H is not the only cycle
in the l-neighborhood of i. So by item (iii) of Claim 12, the number of pairs

i, j ∈ S such that M
(l)
i,j 6= 0 is at most the number of (≤ l)-length paths in G

that contain e.
We bound this number of such paths by

4C2l2(log n)4αl/2,

which by item (i) of Claim 12 means that the Frobenius norm of the block is at
most 2Cl(log n)2αl/2: a contradiction.

It suffices to bound the number of length-t paths containing e = (u, v) by

4C2t(log n)4αt/2.

for all t ∈ {1, . . . , l}. And since E1 and E2(C) hold,

(# length-t paths containing e = (u, v)) ≤

l∑
r=0

(# length-r paths containing u) ·(# length-(t−r−1) paths containing v) ≤

t(2C(log n)2)2αt−1 ≤

4C2t(log n)4αt.
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Proof (of Claim 12). Suppose M
(l)
i,j 6= 0. Since every vertex has at most one

cycle in its l-neighborhood, there are at most 2 length-(≤ l) self-avoiding paths
between every pair of vertices. So the possible cases are:

1. C
(l)
i,j = 0:

(a) B
(l)
i,j = 1. There is a path of length < l between i and j. So there are

two paths of length ≤ l between i and j.

(b) B
(l)
i,j = 2. Impossible. There is no path of length < l between i and

j, because there are at most two (≤ l)-length paths between i and j,

and there is a path of length l between i and j, so C
(l)
i,j = 1.

2. C
(l)
i,j = 1:

(a) B
(l)
i,j = 0. Impossible. The distance between i and j is l, so there

should be an l-length path between them.

(b) B
(l)
i,j = 2. There are two paths of length l between i and j.

So if M
(l)
i,j 6= 0, then |M (l)

i,j | = 1, and there are exactly two (≤ l)-length paths
between i and j. This proves items (i) and (iii) of the claim.

The union of the two paths from i to j contains a simple cycle which is
contained in the depth-l neighborhoods of both i and j. Therefore i ∼ j,
proving item (ii) of the claim.

We now state a version of the Davis-Kahan theorem ([3]) presented in [1]:

Theorem 14 (Davis-Kahan Theorem from [1]). Suppose that H =
∑n
j=1 µ̄j ūj ū

T
j

and H = H̄ + E, where µ̄1 ≥ · · · ≥ µ̄n, ‖ūj‖2 = 1 and E is symmetric.
Let uj be an eigenvector of H corresponding to its j-th largest eigenvalue, and
∆ = min{µ̄j−1 − µ̄j , µ̄j − µ̄j+1}, where we define µ̄0 = +∞ and µ̄n+1 = −∞.
We have

min
s=±1

‖suj − ūj‖2 .
‖E‖2

∆
. (1)

In addition, if ‖E‖2 ≤ ∆, then

min
s=±1

‖suj − ūj‖2 .
‖Eūj‖2

∆
, (2)

where both . only hide absolute constants.

Using Theorem 14, and Theorem 2.1 of [7], we can characterize the top
two eigenvalues and eigenvectors of the distance-l matrix of a SSBM. The
following theorem is analogous to Theorem 2.1 in [7], which characterizes the top
eigenvalues and eigenvectors of the self-avoiding-paths matrix B(l) of a SSBM.
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Theorem 15. Let G = SSBM(n, a/n, b/n) for two constants a, b ≥ 0 such
that the expected degree α := (a + b)/2 > 1, and such that β2 > α, where
β := (a − b)/2. Let X ∈ {−1,+1}n be the hidden label vector of G. Then, for
l = c log n such that l < logα n

1/4, we have the following with high probability:

1. The first eigenvalue of C(l) is Θ(αl) up to logarithmic factors. The corre-
sponding eigenvector is asymptotically parallel to B(l)~1.

2. The second eigenvalue of C(l) is Ω(βl) up to logarithmic factors. The
corresponding eigenvector is asymptotically parallel to B(l)X.

3. For any ε > 0, all other eigenvalues are O(nε
√
αl).

Proof. Write C(l) = B(l) − M (l). By Lemma 11, ρ(M (l)) = O(nεαl/2), for
all ε > 0. Therefore, if C(l) has three eigenvectors of eigenvalue ω(nεαl/2)
for some ε > 0, there are three orthogonal unit vectors v1, v2, v3 such that
‖C(l)vi‖2 = ω(nεαl/2), and hence ‖B(l)vi‖2 = ω(nεαl/2) by triangle inequality.
This contradicts Theorem 2.1 of [7], which states that with high probability B(l)

only two vectors with eigenvalue ω(nεαl/2), and hence item 3 is true.
For items 2 and 3, notice that we can apply the Davis-Kahan inequality

because ρ(M (l)) = O(nεαl/2) for all ε > 0. And in both cases, for all ε > 0,
∆ = ω(nεαl/2). Hence the first eigenvector of C(l) asymptotically aligns with
the first eigenvector of B(l), and the second eigenvector of C(l) asymptotically
aligns with the second eigenvector of B(l). Since the spectral norm is bounded,
we get that the first and second eigenvalues of C(l) match with the first and
second eigenvalues of B(l), which are Θ(αl) and Ω(βl), respectively.

Incidentally, Lemma 4.4 of [7] states that B(l)1 is asymptotically aligned
with C(l)1 and B(l)X is asymptotically aligned with C(l)X. But as stated,
Theorem 15 already allows us to weakly recover X from the second eigenvector
of C(l), by using the same procedure that [7] uses to recover X from the second
eigenvector of B(l).

Graph Powering on the SSBM

This characterization of the top two eigenvectors of the distance-l matrix in-
dicates that the top two eigenvectors of the adjacency matrix of an l-powered
graph should also be aligned with B(l)1 and B(l)X, respectively. Indeed, writing

A(l) =
l∑
t=0

C(t) =

l/2∑
t=0

C(t) +
l∑

t=l/2+1

C(t),

we notice that by Theorem 15 and triangle inequality, ρ
(∑l/2

t=0 C
(t)
)

= O(lαl/2)

up to logarithmic factors, so the corresponding terms C(t) for t ≤ l/2 in the
sum are negligible by the Davis-Kahan theorem. And moreover one can see
that for t > l/2, the top two eigenvectors of C(t) are asymptotically well aligned
with the top two eigenvectors of C(l) by combining Theorem 15 above, and
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Theorem 2.3 in [7]. Therefore, heuristically, the top two eigenvectors of A(l)

should asymptotically align to the top two eigenvectors of C(l), giving weak
recovery via the graph powering operator.

3.2 Empirical Evidence: Clustering the GGBM

Powering the GGBM and then clustering based on the top eigenvectors of the
powered adjacency matrix appears to give weak recovery. The clusters are
similar to those obtained via the normalized Laplacian, without powering.

4 Weak recovery for the GBM

In this section, we prove that weak recovery is possible in the SGBM when the
expected degree is ≥ C log n for high enough constant C. We also conjecture
that weak recovery is possible in the GGBM for large enough constant expected
degree, and we provide some justification for our conjecture.

4.1 Proof: Expected logarithmic degree (SGBM)

Our first goal will be to prove that in the regime of expected logarithmic de-
gree with high leading constant, the graph distances will closely resemble the
straight-line distances in the plane.

Lemma 16. Let G ∼ SGBM(n,D, T ), where T > 4
√

logn
n . Then with high

probability G is connected and for all u, v ∈ V (G), dG(u, v) ≤ 4d(pu, pv)/T .

Proof. Choose r, c ∈ Z>0 and divide [−(D+1)/2,+(D+1)/2]× [−1/2, 1/2] into
an r × c array of bins (Ai,j)(i,j)∈{0,...,r−1}×{0,...,c−1} such that

Ai,j = (− (D + 1)

2
+
i(D + 1)

r
,−1

2
+
j

c
) + [0,

D + 1

r
]× [0,

1

c
].

Let S = {pv | v ∈ V (G)} be the set of points associated with the vertices of G,
and let Ei,j be the event that Ai,j ∩ S 6= ∅.

P[Ei,j ] = 1− P[pk 6∈ Ai,j∀k ∈ [n]] ≥ 1−
(

1− (D + 1)

2rc

)n
.

So by union bound

P[Ei,j∀(i, j)] ≥ 1− rc
(

1− (D + 1)

2rc

)n
≥ 1− rc exp

(
−n(D + 1)

2rc

)
.

So choosing r, c so that rc ≤ (D+1)
2

n
logn , we have

P[Ei,j∀(i, j)] ≥ 1− (D + 1)

2

1

log n
→ 1.
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Hence, let r = b(D + 1)cc, and c = b 1√
2

√
n

lognc from now on. And notice that

for any p ∈ Ai,j , q ∈ Ai±1,j ∪Ai,j±1, d(p, q) ≤ 4
√

logn
n .

Hence, setting the threshold T = 4
√

logn
n means that every bin of side-

length
√
2
4 T contains a point, which is connected to all points in adjacent bins.

Since all the points in S are in some bin, with high probability the graph G is
connected, and, for all u, v ∈ V (G),

dG(u, v) ≤ 4d(pu, pv)/T.

Lemma 17. Let G ∼ SGBM(n,D, T ) as above, for T > 4
√

logn
n . Then for all

ε > 0, with high probability

dG(u, v) = d(pu, pv)(1 + o(1))/T

for all u, v ∈ V (G) such that d(pu, pv) ≥ n−1/2+ε.

Proof. It suffices to prove that dG(u, v) ≤ d(pu, pv)(1 + o(1))/T because the
other direction is clear.

Cut [−(D + 1)/2,+(D + 1)/2]× [−1/2,+1/2] into squares of side length h.
Then, for every pair of squares Ai, Aj , build a sequence of “stepping stone” bins

Di,j = (D
(1)
i,j , . . . , D

(mi,j)
i,j ) as follows:

1. Rotate the plane around the center of Ai so that the centers of Ai and Aj
are separated by a horizontal line segment of distance d, and Aj is to the
right of Ai.

2. Construct the sequence (D
(1)
i,j , . . . , D

(mi,j)
i,j ) of squares whose sides are par-

allel to the current x- and y-axes such that

(a) The side length of each square is s ≤ h
√

2.

(b) Ak ⊂ D(1)
i,j .

(c) Space the squares so that their centers are distance T −3s apart, and

square D
(l+1)
i,j is to the right of square D

(l)
i,j .

(d) mi,j = dd/(T − 3s)e.

3. Rotate the plane back to its original orientation.

We say that a stepping stone sequence Di,j is “good” if, writing S = {pv | v ∈
V (G)},

mi,j∑
l=1

1(S ∩D(l)
i,j = ∅) ≤ 2mi,j/(log n).
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Notice that if pv ∈ Ai, pu ∈ Aj , and Di,j is good, then by Lemma 16 and
triangle inequality, with high probability

dG(u, v) ≤ d(pv, pu)

T − 3s
(1 + o(1)) +O(1),

because thinking of each bin D
(l)
i,j as a stepping stone, we can follow the stepping

stone sequence for all but a o(1) fraction of the stepping stones, and whenever
a stepping stone is missing we can use Lemma 16 to skip it with a slowdown of
only about 3d(pu, pv)/(T − 3s).

For the last part of the proof, we couple S with a homogeneous Poisson point
process P with density λ = n

5 on [−(D+ 1)/2,+(D+ 1)/2]× [−1/2,+1/2] such
that with high probability, P ⊂ S, because conditioned on |P|, the distribution
of points of P is uniform, and |P| < n with high probability. Therefore, we
may condition on P ⊂ S. (For more details on this kind of coupling, a good
reference is Chapter 1 of [10].)

Set h = c1

√
log logn

n for a constant c1 to be determined later. We prove that

for all ε > 0, with high probability Di,j is good for all (i, j) such that the centers
of Ai and Aj are distance ≥ n−1/2+3ε apart.

Pick such a pair (i, j). Then mi,j ≥ n2ε/
√

log n. Notice that we can assume

that all the bins D
(1)
i,j , . . . , D

(mi,j)
i,j are disjoint, since h = o(T ). The Let El be

the event that D
(l)
i,j ∩ P = ∅. For appropriate c1,

P[El] = exp(−nh
2

2
) = 1/(log n),

and since the bins are disjoint, all the events E1, . . . , Emi,j are independent.
Since the expected number of empty bins is

∑mi,j

l=1 P[El] = mi,j/(log n) ≥
n2ε/(log n)3/2 ≥ nε, by Chernoff bounds, with probability ≥ 1 − exp(−c2nε)
at most 2mi,j/(log n) of the events El do not hold. If El holds, then ∅ 6=
D

(l)
i,j ∩ P ⊂ D

(l)
i,j ∩ S. Hence, Di,j is good with probability 1− exp(−c2nε).

Since there are O(n2) pairs of bins (i, j), by union bound all Di,j for which
the centers of Ai and Aj are farther than n−1/2+3ε are good with high proba-
bility.

Solution to Weak Recovery Given Lemmas 16 and 17, we can solve weak

recovery on the SGBM when T > 4
√

logn
n .

The algorithm we propose is: let u, v be the vertices that are farthest away
from each other on G. Now let Nu(l) be a neighborhood of depth l of u. Assign
label X̂w = +1 to all vertices w ∈ Nu(D/(2T )), and assign an independent
X̂w ∼ Rad(1/2) to each of the other vertices.

By the proof of Lemma 16, we know that the S = {pw | w ∈ V (G)} will

contain points within distance O(
√

logn
n ) of the corners of the box

B ≡ [−(D + 1)/2,+(D + 1)/2]× [−1/2,+1/2].
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Therefore, letting r ≡
√

(D + 1)2 + 1 denote the distance between the two
corners of the box, there will be vertices in G that have graph distance at least
r/T . Moreover, by Lemma 17, the maximum graph distance between a pair of
vertices will be r(1 + o(1))/T .

Let u, v be the two points that are furthest away from each other in G. By
Lemma 17, d(pu, pv) = r(1− o(1)). Hence, pu is distance o(1) from a corner of
B. For every vertex w ∈ Nu(D/(2T )), d(pu, pw) ≤ D

2 (1 + o(1)). So by triangle
inequality all w ∈ Nu(D/(2T )) have the same label as u, because they are all in
a region in which only one of the distributions γ+ or γ− has support. Moreover,
Nu(D/(2T )) contains all the vertices w for which d(pu, pw) ≤ D

2 (1 − o(1)), for
some o(1). Therefore, with high probability Nu(D/(2T )) contains at least αn
vertices, for some α(D) > 0.

Hence, with high probability, the algorithm outputs a guess X̂ of the hidden
labels X that has agreement A(X, X̂) = 1−α

2 + α + o(1) = 1
2 + α

2 + o(1) > 1
2 ,

solving weak recovery.

4.2 Conjecture: Expected constant degree (GGBM)

We conjecture that weak recovery is possible in the GGBM for any D > 0 when
the expected degree is a large enough constant c. The conjecture is heuristically
justified by the following algorithm, that succeeds with probability q > 0, and
that outperforms random guessing when it succeeds:

Proposed Clustering Algorithm

1. Pick a random vertex v, and let Nv(an) be the set of an vertices that are
closest to it in the graph (breaking ties arbitrarily).

2. Give label +1 to all vertices in Nv. Give independent Rad(1/2) labels to
all other vertices.

a is a small constant that we set based on c and D.

Non-rigorous justification The idea behind the algorithm is that if the
expected degree c is high enough, then there is ε(a) > 0 such that ε → 0 as
a→ 0, and such that for a constant fraction of vertices v, we have

{pu | u ∈ Nv(an)} ⊂ Dε(pv),

where Dε(pv) is the disk of radius ε centered at v. If a point is sampled from
Dε(pv), then it has probability 1

2 +δpv of being in one community, and probabil-
ity 1

2−δpv of being in the other community. So, roughly speaking, the algorithm
achieves agreement 1

2 +aδpv +o(1), given that it chooses v as its random vertex.
Letting c large enough, we can ensure that there is uniform δ > 0 such that a
constant fraction f ′ of vertices have the property above and also have δv > δ.
So, heuristically, with probability ≈ f ′ the algorithm will achieve agreement
1
2 + aδ > 1

2 , as desired.
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It seems that one can show that {pu | u ∈ Nv(an)} ⊂ Dε(pv) with constant
probability by (1) using arguments from [10] relating finite random geometric
graphs to infinite geometric graphs in which the vertices are points drawn from a
Poisson point process (continuum percolation), and by then (2) using arguments
on the concentration of the ratio of graph-distance to straight-line-distance in
homogeneous continuum percolation ([5], [11]).
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