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1 Introduction

Predicted theoretically and discovered experimentally, the topological insulators are a new class of ma-

terials of particular interest for studying a wide range of issues from fundamental physics of topological

order to applications in spintronics and topological quantum computation. These materials are bulk

insulators, but maintain robust conducting surface states. The existence of these conducting states on

the surface of the material is a direct result of the nontrivial topology of the bulk Hilbert space,under

the assumption of time-reversal invariance symmetry. Insulators with time-reversal symmetry can be

shown to generically belong to two distinct classes, trivial and non-trivial. Nontrivial topological in-

sulators and the trivial insulating vacuum have wavefunctions which are not smoothly deformable into

one another without closing a bulk gap. This difference manifests itself at the interface between the

topological insulator and the vacuum. As a result, the surface states are not spurious and cannot be

“deformed away”. This renders them robust to any impurity that does not violate the time-reversal

symmetry of the bulk material. Potential impurities do not cause backscattering of the edge or surface

modes of these new insulators. However, magnetic impurities break time-reversal symmetry and lead to

back-scattering.[1][2][3]

As these conducting states are surface phenomena, they can be probed experimentally by Scanning

Tunneling Microscopy (STM), a technique to observe the electronic structure of a material’s surface.

Experiments at Princeton to examine these topological insulators and their surface states are underway.

[4] In this independent work paper, we seek to perform a theoretical analysis of several physical phe-

nomena involving the surface states of a topological insulator material when we apply certain impurity

potentials at the surface, in the hopes that some of these results may be experimentally testable by

STM experiments. In particular, the structure and phenomena investigated in this JP is as follows: we

first introduce a simple model of a bulk topological insulator and exemplify how it differs from a trivial

insulator; by exact diagonalization, of the system with a boundary, we show the presence of surface

(edge) states, as well as their robustness to the application of edge impurities. We show by exactly

diagonalizing the Hamiltonian that upon the application of time-reversal invariant impurity potentials

(which we artificially maintain translationally invariant in one direction), the edge states remain robust.

If the edge potential is increased, the edge reconstructs inside the material, by “flowing” around the
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impurity. In the presence of small magnetic impurities, we show the surface state is destroyed entirely,

and does not reconstruct into the bulk. We extend this analysis to provide a basis to perform similar

calculations and simulations in the case of a three-dimensional (quasi-two dimensional) topological insu-

lator. We then focus on the behavior of the edge modes in the presence a surface step-potential. These

situations are directly related to experiments currently performed in the Yazdani group at Princeton. We

adopt an effective action description in which we model the surface states of 3 dimensional topological

insulators by 2-dimensional gapless Dirac fermions. We analyze the Klein tunneling of these fermions in

barriers of geometries previously not analyzed in the literature. Trying to model the experiments, we

derive the expression for the transmission coefficient with a single-barrier potential cited in [5] and then

extend this problem to any arbitrary number of potential barriers. We perform this for different barrier

geometries. Finally, we introduce hexagonal warping terms in our Dirac effective edge Hamiltonian, and

suggest a way to re-analyze the tunneling problems in this setting. The hexagonal distortion terms are

very important in the detailed physics of the Bi2Te3 insulator as they can lead to increased scattering.

2 A Two-Dimensional, Translation Invariant System: HgTe

In this section, we consider an inversion-symmetric, two-dimensional Hamiltonian for Mercury Telluride

(HgTe), the first topological insulator discovered. We show the eigenvalue spectrum for this Hamilto-

nian and find the protected surface states. We also plot the localization profile of the wavefunctions

on the edge of the material. We then add several additional terms to this Hamiltonian which break

bulk inversion symmetry in the bulk of the material, and show that the surface states remain protected.

We next add a scalar potential localized on the edge of the material and see that, upon increasing its

value, the edge states reconstruct as to avoid the region of high scalar potential, but still remain gapless.

Finally, we add edge terms which break time-reversal symmetry and examine their effects on the surface

states. In this case, the terms open a gap in the edge states on the surface where they are placed and

no reconstruction is observed.

Our HgTe model will be that of a two-dimensional (x,y) square lattice with two orbitals (s and p)

per lattice site for each spin direction (spin up and spin down). We begin in section 2.1 by considering

a simpler model (half of the HgTe model), known as the Chern insulator, where we do not consider

spin and thus have only two, spatial orbitals per site. This model will have a Hall conductance and

break Time-Reversal symmetry. The results obtained here are then easily extended to the standard

HgTe Hamiltonian by “doubling” the spectrum in a way, described below, that restores time-reversal

invariance.

2.1 Chern Insulator Hamiltonian

We start with a k-space Hamiltonian for the Chern insulator, periodic in both x and y directions, and

transform this Hamiltonian into real space to impose non-periodic boundary conditions in the x-direciton

which give rise to the edge states. The simplest Hamiltonian is dictated by symmetry, as the coupling
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between s and p orbitals has to be odd in momentum space[6]:

H =
∑
k

(
c†1k c†2k

)
[A1 sin kxσx +A2 sin kyσy + (2−M − cos kx − cos ky)σz]

(
c1k

c2k

)
(1)

where c†1k,2k and c1k,2k are creation and annihilation operators at orbitals 1, 2 of momentum k. A1, A2,

and M are parameters which we set in our calculations, and σx, σy, σz are the SU(2) matrices which

in the current case act on orbital rather than spin space. As is traditional, we have left out the lattice

constant, which has units of meters and multiplies kx and ky in the trig function terms, implicitly setting

it equal to 1. We wish to diagonalize the Hamiltonian in a “Laughlin” cylinder geometry: we impose the

non-periodic boundary condition in the x-direction so that H is periodic in the y-direction and has Lx

lattice sites in the x-direction. We now transform the Hamiltonian to real-space by taking term-by-term

Fourier transforms. Keeping the ky-dependence because ky is still a good quantum number (as we are

not attempting to modify the translational invariance of the Hamiltonian in this direction), we can write

the k-space creation/annihilation operators as:

cα,k =
∑
j

eikxjcα,ky ,j (2)

We first Fourier transform the terms in the Hamiltonian that do not depend on kx, namely the A2 sin kyσy

and (2−M − cos ky)σz terms:

A2 sin kyσy + (2−M − cos ky)σz −→
∑
j

(
c†1,ky ,j c†2,ky ,j

)
[A2 sin kyσy + (2−M − cos ky)σz]

(
c1,ky ,j

c2,ky ,j

)
=
∑
j

c†α,ky ,jUαβcβ,ky ,j (3)

where repeated indices indicate summation and

U = A2 sin ky

(
0 −i
i 0

)
+ (2−M − cos ky)

(
1 0

0 −1

)

Next we look at the kx-dependent terms, A1 sin kxσx and − cos kxσz. We have these terms in the

Hamiltonian as

Hsin kx =
∑
k

(
c†1k c†2k

)
[A1 sin kxσx]

(
c1k

c2k

)
(4)

Hcos kx =
∑
k

(
c†1k c†2k

)
[− cos kxσz]

(
c1k

c2k

)
(5)

Let’s start with the sine term (4) to manipulate it into the real-space representation:

Hsin kx =
∑
k

c†αkV
′
αβ sin kxcβk =

∑
k

c†αkV
′
αβ

(
eikx − e−ikx

2i

)
cβk =

∑
k

c†αkVαβ
(
eikx − e−ikx

)
cβk (6)
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where

V =
V ′

2i
=
A1

2i

(
0 1

1 0

)
We now recall our Fourier expansions for the creation and annihilation operators from equation (2) and

plug them in to the two kx-dependent terms of (6), eikx and e−ikx :∑
k

c†αke
ikxcβk =

∑
k

∑
j1

e−ikxj1c†α,ky ,j1e
ikx
∑
j2

eikxj2cβ,ky ,j2 =
∑
j1,j2

δj1,j2+1c
†
α,ky ,j1

cβ,ky ,j2

=
∑
j2

c†α,ky ,j2+1cβ,ky ,j2 (7)

where we’ve used the identity
∑

k e
ikx(l−m) = δl,m. Similarly, for the e−ikx term, we have:∑

k

c†αke
−ikxcβk =

∑
k

∑
j1

e−ikxj1c†α,ky ,j1e
−ikx

∑
j2

eikxj2cβ,ky ,j2 =
∑
j2

c†α,ky ,j2−1cβ,ky ,j2 (8)

So putting these expressions (7) and (8) into (4) yields for the A1 sin kxσx term:

Hsin kx =
∑
j

(
c†α,ky ,j+1Vαβcβ,ky ,j − c

†
α,ky ,j−1Vαβcβ,ky ,j

)
(9)

We do the same thing for the − cos kxσz term. From equation (5), we have:

Hcos kx = −
∑
k

c†αkT
′
αβ cos kxcβk = −

∑
k

c†αkTαβ
(
eikx + e−ikx

)
cβk (10)

where

T =
1

2

(
1 0

0 −1

)
Now using the expressions from equations (7) and (8), we obtain:

Hcos kx = −
∑
j

(
c†α,ky ,j+1Tαβcβ,ky ,j + c†α,ky ,j−1Tαβcβ,ky ,j

)
(11)

We now let Lαβ = Vαβ − Tαβ and Oαβ = Vαβ + Tαβ, and combine equations (3), (9), and (11) to write

our position space Hamiltonian as:

Hky =
∑
j

(
c†α,ky ,jUαβcβ,ky ,j + c†α,ky ,j+1Lαβcβ,ky ,j − c

†
α,ky ,j−1Oαβcβ,ky ,j

)
(12)

We note that this Hamiltonian depends, still, on ky, but our creation and annihilation operators act in

position space to create these orbitals on the position-space square lattice. We are now in a position

to apply this Hamiltonian to a position-space wavefunction and enforce the edge boundary condition

in the x-direction. We thus want to solve the Schrodinger equation, Hky
∣∣ψky〉 = E

∣∣ψky〉, with the
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single-particle states
∣∣ψky〉 given by

∣∣ψky〉 =
∑
j,θ

aθ,ky ,jc
†
θ,ky ,j

|0〉

This wavefunction is a sum over lattice sites j and orbitals θ (here j = 1→ Lx, θ = 1, 2), where we create

a particle on each site and orbital with creation operator c†θ,ky ,j . The amplitude of the wavefunction at

each site/orbital is given by aθ,ky ,j . We of course retain the ky dependence in all these terms, as the our

Hamiltonian is for a given ky. We recall the property of creation and annihilation operators:

cβ,ky ,j1c
†
θ,ky ,j

|0〉 = δθβδjj1 (13)

Now let’s act on the wavefunction
∣∣ψky〉 with the Hamiltonian Hky :

Hky
∣∣ψky〉 =

∑
j

c†α,ky ,jUαβcβ,ky ,j + c†α,ky ,j+1Lαβcβ,ky ,j − c
†
α,ky ,j−1Oαβcβ,ky ,j

∑
j,θ

aθ,ky ,jc
†
θ,ky ,j

|0〉


=

∑
j

c†α,ky ,jUαθaθ,ky ,j + c†α,ky ,jLαθaθ,ky ,j−1 − c
†
α,ky ,j

Oαθaθ,ky ,j+1

 |0〉
= E

∑
j,θ

aθ,ky ,jc
†
θ,ky ,j

|0〉

We have made use of the relation (13) for creation and annihiliation operators in the second line above,

and adjusted indices. Since c†θ,ky ,j |0〉 are linearly independent, the Schrodinger equation reduces to j

matrix equations:

Uαθaθj + Lαθaθj−1 −Oαθaθj+1 = Eaθj

We can now apply the boundary condition in the x-direction such that we have an edge. Since j ranges

from 1 to Lx, we set aθ0 = aθLx+1 = 0, specifying that the wavefunction amplitudes on the sites just

outside the square lattice are zero. This is in contrast with a periodic boundary condition in which we

would have aθLx+1 = aθ1. The matrix equations therefore are:

U

(
a11

a21

)
−O

(
a12

a22

)
= E

(
a11

a21

)
. . .

U

(
a1j

a2j

)
+ L

(
a1j−1

a2j−1

)
−O

(
a1j+1

a2j+1

)
= E

(
a1j

a2j

)
. . .

U

(
a1Lx

a2Lx

)
+ L

(
a1Lx−1

a2Lx−1

)
= E

(
a1Lx

a2Lx

)

We form these equations into a 2Lx× 2Lx matrix eigenvalue equation, with the matrix having U on the
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Figure 1: (Left) Plot of the eigenvalue spectrum, E versus k for 100 lattice sites with M = 0.5 for the Chern
insulator. (Center) Wavefunction localization for the same system, showing the existence of edge modes localized
on the edges of the lattice. (Right) Plot of the eigenvalue spectrum, E versus k for 100 lattice sites with M = -0.5
for the Chern insulator. We observe the phase transition between trivial and nontrivial topological classes at M
= 0.

main diagonal, −O on the upper diagonal, L on the lower diagonal, and zero elsewhere:

U −O 0 . . . 0

L U −O . . . 0

0 L U . . . 0
...

...
. . .

. . . −O
0 0 0 L U





a12

a22
...

a1Lx

a2Lx


= E



a12

a22
...

a1Lx

a2Lx


(14)

For each ky, we diagonalize to find eigenvectors and eigenvalues, and plot the eigenvalues for a Lx =

100 site lattice. For A1 = A2 = 1, and M = 0.5, we show plots of the eigenvalue spectrum and the

localization of the wavefunctions in Figure 1. We can see the gapless edge modes (one mode on each edge)

in the eigenvalue spectrum, and the localization plot (center), which charts the wavefunction amplitude

over each lattice site in the x-direction, verifies that they are indeed located on left and right edges.

There is a phase transition at M = 0 between a trivial and a nontrivial Chern insulator, as suggested

in Figure 1, as the eigenvalue spectrum for M = 0.5 shows the gapless surface states and is thus of the

nontrivial topology, whereas in the M = -0.5 spectrum, the surface states have vanished, and we have

the trivial topology. The Chern insulator is an Integer Hall effect without applied magnetic field, but

with a lattice time-reversal symmetry breaking term.

2.2 2D Quantum Spin Hall Hamiltonian: HgTe

Though the matrix equations we derived in the previous section applied to the simpler, Chern insulator

Hamiltonian, in which we ignored spin, we can readily extend this prescription to a system with spin,

by letting θ run over 4 different orbitals (s and p for both spin up and spin down). In essence, this

“quantum spin hall” Hamiltonian for HgTe consists of two copies of the Chern insulator Hamiltonian,

one with spin up and one with spin down. It is called the quantum spin hall (QSH) Hamiltonian because

the system can be seen as two copies of the integer quantum hall effect, with spins traveling in the

opposite directions around the material, so that there is no net charge quantum Hall conductance (as

equal numbers of spin up and spin down electrons are traveling in opposite directions), but the Hall
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conductivity of the spins is quantized. If we let our original Chern insulator Hamiltonian be denoted

h(k), then the QSH Hamiltonian which, unlike the Chern insulator, respects time-reversal invariance, is

given by:

H(k) =

(
h(k) 0

0 hT (−k)

)
(15)

To see why this must be true, we consider a general system with spin up and down given by the

Hamiltonian

H(k) =

[
h↑↑(k) h↑↓(k)

h↓↑(k) h↓↓(k)

]
(16)

and apply the time reversal operator defined by T = −iσyK, where K is the operator for complex

conjugation:

TH(k)T−1 = σyH
∗(k)σy = σyH

T (k)σy =

[
hT↓↓(k) −hT↑↓(k)

−hT↓↑(k) hT↑↑(k)

]
(17)

where the first equality follows from σ−1y = σy, and the second since H is Hermitian. Since the system

obeys time-reversal invariance, TH(k)T−1 = H(−k) (as the time reversal operator sends k to −k), and

we can equate the H11 elements of (17) and (16) to obtain h↓↓(k) = hT↑↑(−k) and thus the Hamiltonian

in (15). For the QSH model then, we simply replace the Pauli matrices with Γ1, Γ2, and Γ3 from [6]

respectively and consider θ from 1 to 4. To see this more explicitly, we look at these Γi matrices:

Γ1 =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , Γ2 =


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 , Γ3 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


and note that in our Hamiltonian, modified from equation (1), Γ1 and Γ2, replacing σx and σy, respec-

tively, multiply terms odd in k, namely sin kx and sin ky, whereas Γ3, replacing σz, multiplies only terms

even in k. Thus we verify that the condition h↓↓(k) = hT↑↑(−k) holds for this QSH Hamiltonian by noting

that for Γ1 and Γ2, the lower diagonal block equals the negative transpose of the upper diagonal block,

whereas for Γ3, the lower diagonal block equals the transpose of the upper diagonal block. This minus

sign is precisely accounted for in the terms odd in k when we send k to −k to satisfy this condition.

Thus we have restored time-reversal invariance. The eigenvalue spectrum and edge localizations here

are the same as in the Chern insulator case, except there are two copies of each edge mode.

2.3 Inversion Symmetry-Breaking Terms

In this section, we add terms which break inversion symmetry in the bulk to our Hamiltonian and see that

the surface states are robust to this symmetry breaking. The terms we wish to add to our Hamiltonian
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are the following:

Γ35 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , Γ34 =


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

 , Γ23 =


0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

 , Γ13 =


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


To see that they break inversion symmetry, we consider the inversion matrix P for this system: P = Γ3,

defined as such so that it sends the two-orbital, two-spin wavevector ψ = [|s, ↑〉 , |p, ↑〉 , |s, ↓〉 , |p, ↓〉] to

[|s, ↑〉 ,− |p, ↑〉 , |s, ↓〉 ,− |p, ↓〉]. That is, the p orbitals are odd under a parity (inversion) transformation,

and the s orbitals are even–a basic fact from quantum mechanics and the shape of the s and p orbitals

(s is spherically symmetric). Having determined our inversion matrix, we can readily see that for all

the Γ matrices listed just above, PΓP−1 = −Γ, and inversion symmetry in the Hamiltonian is therefore

broken, as the parity operator no longer leaves the system invariant.

By a similar prescription to that described for the parity operator, one can also show that these matrices

are all time-reversal invariant. Thus we expect that the surface states in HgTe are robust in the presence

of these inversion-breaking terms. Rediagonalizing our Hamiltonian with these additional terms (one at

a time) yields the spectra shown in Figure 2. We see that for each additional term, the spectrum remains

gapless. The broken inversion symmetry may cause the two copies of the edge modes to no longer be

identical, as for Γ13, but this corresponds, as we see, only to shift in the spectrum and not an opening of

a gap. As we increase the weight ∆ by which we multiply the Γ term, we see that the bulk gap begins to

close, maintaining the surface states. Once the bulk gap closes, for values of ∆ ≈ 0.9 in our calculations,

it opens back up without any surface states, representing a phase transition between the topologically

nontrivial and topologically trivial classes.

2.4 Surface Impurities

Whereas in the previous section, we added these inversion-breaking impurities throughout the material,

in this section we concentrate on what happens to the edge states when we place an additional impurity

potential term on the edge. In Figure 3, we have added a constant scalar potential V = 0.3 to the last

two lattice sites. In the spectrum plot (center), we see that one of the surface states, corresponding

to the edge mode on the edge on which we’ve applied the potential, shifts upward by the amount of

the applied potential. We note, of course, that both edge modes remain gapless. Furthermore, we can

see the edge mode receding into the bulk in the presence of this surface impurity from the plots of the

wavefunction amplitudes. On the left, we observe this effect of the surface state “flowing around” the

potential impurity for V = 0.3. On the right, the effect becomes more pronounced as we increase the

scalar potential on the edge to V = 1.5.
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Figure 2: Plots of E versus k, the eigenvalue spectra for 100 lattice sites with M = -0.5 for different inversion
breaking terms and weights ∆. The upper left plot was obtained by adding the Γ35 term with weight ∆ = 0.2;
the upper right, Γ34 with weight ∆ = 0.5; the lower left, Γ23 with weight ∆ = 0.7; and the lower right, Γ13 with
weight ∆ = 0.2

Figure 3: Plots for Γ35 in the bulk and a scalar potential V on the edge. The surface states are shifted upwards
from the potential (center, V = 0.3) and they recede into the bulk. On the left, we have V = 0.3 and see the
recession into the bulk beginning. On the right, V = 1.5, and we see this effect becoming more pronounced.

9



Figure 4: (Left) Energy eigenvalue spectrum for TR-breaking term gy on the last 5 lattice sites. (Right) Eigenvalue
spectrum with the gy TR-breaking term added onto the last 2 lattice sites and Γ35 in the bulk for Lx = 300.

Finally, we introduce a time-reversal breaking impurity term into our system,

gy =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


In Figure 4, on the left we show the eigenvalue spectrum when we place this term on the last 5 lattice

sites. We see that a gap opens in one of the edge modes (on which we’ve placed this impurity potential),

as time-reversal is broken there, while the other edge mode (on the other edge of the lattice) is unaffected

by this local impurity. On the right of Figure 4, we have placed this gy term on the last two lattice

sites, in addition to the inversion breaking Γ35 term throughout the lattice. We see a large gap opens

up, destroying the surface state on which we have placed the magnetic impurity term. We also varied

Lx, the number of sites in the x-direction of the lattice, but the large gap persisted and there was no

evidence of any reconstruction of the edge states in the bulk. The spectrum shown here is taken for

Lx = 300, whereas all other plots in these sections were for a lattice size of Lx = 100. As the gap persists

even as we increase Lx, we thus conclude that the edge modes do not reconstruct, but are destroyed in

the presence of a time-reversal breaking impurity.

2.5 Extension 3D Topological Insulators

Finally, before leaving the tight binding model Hamiltonian for Dirac surface states, we extend the

previous analysis to the possibility of considering three-dimensional Hamiltonians. Again, this is a

quasi-2D picture, as for the third dimension we employ periodic boundary conditions. We show here in

Figure 5 cuts similar to the 2D cuts displaying the surface states shown above. As we can see though,

instead of an X-like shape, involving two surface bands, we have an entire Dirac cone in this case. This

Dirac cone is of much current experimental interest for its ability to host exotic states of matter such as

an anomalous quantum hall state, Majorana fermions, or magnetic monopoles, when put into interaction

with other ordered phases of matter such as magnetism or superconductivity.
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Figure 5: Plots of Energy as a function of kz and ky for the three-dimensional topological insulator case.
The second figure is a smaller segment of the first for the sake of visibility of the Dirac cones.
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3 Potential Barriers on 3D Topological Insulators without Transla-

tional Invariance

Having examined the question of edge reconstruction on the edges of a two-dimensional, translationally

invariant topological insulator, we now turn our attention to the physics of surface states of the three-

dimensional strong topological insulators. These insulators exhibit topologically protected surface states

very much like their two-dimensional siblings studied in the previous sections. However, the surface

states are now two-dimensional, and they are described, at low energies, by the two-dimensional Dirac

Hamiltonian (presented below). We add to the surface of the topological insulator a step barrier potential

which simulates the atomic layer-thick step-ridges present on the surface of Bi2Te3 (as observed by

experiments in the Yazdani group). We place potential impurities in the form of barriers on this surface

and calculate the transmission coefficients for Dirac fermions scattering off these impurity barriers.

4 The Klein Tunneling Problem

In this section, we derive the results in [5] as a starting point for our examination of transmission through

potential barriers for a Dirac Hamiltonian. We consider a single potential barrier of height V0, solve the

Schrodinger equation for the Dirac Hamiltonian, and apply boundary conditions in different potential

regions to obtain the transmission coefficient of a Dirac fermion through the barrier.

4.1 Verifying the Ansatz: Finding kx, ky, qx, and θ

We begin with the Dirac-like Hamiltonian,

H0 = −i~vFσ∇ (18)

and potential

V (x) =

{
V0, 0 < x < D,

0, otherwise
(19)

which give us the Schrodinger equation in the Dirac spinor basis:

−i~vF

(
0 −i∂y + ∂x

i∂y + ∂x 0

)(
ψ1

ψ2

)
+ V (x)

(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
. (20)

We now look at our ansatz from [5], which we wish to plug into (20) to find conditions on kx, ky, qx,

and θ:

ψ1(x, y) =


(eikxx + re−ikxx)eikyy, x < 0,

(a1e
iqxx + b1e

−iqxx)eikyy, 0 < x < D,

teikxx+ikyy, x > D

ψ2(x, y) =


s(eikxx+iφ − re−ikxx−iφ)eikyy, x < 0

s′(a1e
iqxx+iθ − b1e−iqxx−iθ)eikyy, 0 < x < D

steikxx+ikyy+iφ, x > D
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We notice that all y-dependence is in the form eikyy, so we can replace ∂yψ with ikyψ everywhere. In

the region x < 0, V (x) = 0, and the Schrodinger equation yields two equations in ψ1 and ψ2:

−ikyψ2 − i∂xψ2 =
E

~vF
ψ1 and ikyψ1 − i∂xψ1 =

E

~vF
ψ2 (21)

Now, let’s plug in ψ1 and ψ2 from the ansatz into the first half of equation (21):

E

~vF
(eikxx + re−ikxx) = −ikys(eikxx+iφ − re−ikxx−iφ) + skx(eikxx+iφ + r(e−ikxx−iφ))

= seikxx+iφ(kx − iky) + sre−ikxx−iφ(kx + iky)

Rearranging yields

eikxx
(
seiφ(kx − iky)−

E

~vF

)
+ re−ikxx

(
se−iφ(kx + iky)−

E

~vF

)
= 0

Since eikxx and e−ikxx are linearly independent and the expression is 0 for all x, their coefficients are

each equal to 0:

kx − iky = kF e
−iφ and kx + iky = kF e

iφ (22)

where, recalling that s = sgn(E) (additionally, s′ = sgn(E − V0)), we define

kF =
E

s~vF
=
|E|
~vF

Adding equations (22) together gives a condition for kx and subtracting them gives a condition for ky:

kx = kF cosφ and ky = kF sinφ (23)

Though we do not show it here, if we plug ψ1 and ψ2 into the second half of equation (21) instead,

we obtain the exact same expressions for ky and kx. Now, we consider the region 0 < x < D, where

V (x) = V0 and our Schrodinger equation yields again two equations in ψ1 and ψ2. Making the same

substitution of ikyψ for ∂yψ yields:

−ikyψ2 − i∂xψ2 =
E − V0
~vF

ψ1 and ikyψ1 − i∂xψ1 =
E − V0
~vF

ψ2. (24)

Again, we plug expressions for ψ1 and ψ2 from the ansatz, this time in the region 0 < x < D into the

first part of equation (24) and define k′F = E−V0
~vF

−ikys′(a1eiqxx+iθ − b1e−iqxx−iθ) + s′qx(a1e
iqxx+iθ + b1(e

−iqxx−iθ)) = k′F (a1e
iqxx + b1e

−iqxx) (25)

Rearranging gives

eiqxx
(
a1s
′eiφ(qx − iky)− a1k′F

)
+ e−iqxx

(
b1s
′e−iθ(qx + iky)− b1k′F

)
= 0

Again exploiting the linear independence of eiqxx and e−iqxx we find that their coefficients equal 0,
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yielding

qx − iky =
k′F
s′
e−iθ and qx + iky =

k′F
s′
eiθ (26)

Adding equations (26) gives a condition for qx and subtracting them gives a condition for ky in terms of

θ:

qx =
k′F
s′

cos θ and ky =
k′F
s′

sin θ

so that dividing the two conditions yields an expression for θ:

tan θ =
ky
qx

(27)

and expanding our expression for qx yields:

qx =
k′F
s′

cos θ =
k′F
s′

√
1− sin2 θ =

√(
k′F
s′

)2

−
(
k′F
s′

)2

sin2 θ =

√(
E − V0
~vF

)2

− k2y (28)

We have now obtained all the relations between kx, ky, qx, θ, and φ stated in [5]. In the next section,

we apply the boundary conditions and obtain an expression for the transmission coefficient.

4.2 Applying the Boundary Conditions: Finding r

We now return to our ansatz and apply the boundary conditions that ψ1 and ψ2 are continuous at x = 0

and x = D. This conditions yield the system of 4 equations in 4 unknowns (a,b,r,t):

a1 + b1 = r + 1 (29)

teikxD = a1e
iqxD + b1e

−iqxD (30)

s(eiφ − re−iφ) = s′(a1e
iθ − b1e−iθ) (31)

s′(a1e
iqxD+iθ − b1e−iqxD−iθ) = steikxD+iφ (32)

We begin by dividing equation (32) by equation (30):

seiφ =
s′(a1e

iqxD+iθ − b1e−iqxD−iθ)
a1eiqxD + b1e−iqxD

Rearranging and solving for b1 in terms of a1 yields:

b1 = −a1e2iqxD
(
seiφ − s′eiθ

seiφ + s′e−iθ

)
(33)

Next, we plug (29) in the form of r = a1 + b1 − 1 into (31):

s(eiφ − (a1 + b1 − 1)e−iφ) = s′(a1e
iθ − b1e−iθ)

Rearranging, we get:

a1(s
′eiθ + se−iφ) = b1(s

′e−iθ − se−iφ) + 2s cosφ (34)
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We now plug equation (33) into equation (34):

a1(s
′eiθ + se−iφ) = 2s cosφ− a1e2iqxD

(
seiφ − s′eiθ

seiφ + s′e−iθ

)
(s′e−iθ − se−iφ)

= 2s cosφ− a1e2iqxD
(

2ss′ cos (φ− θ)− 2

seiφ + s′e−iθ

)
Rearranging and simplifying,

2s cosφ = a1

[
s′eiθ + se−iφ + e2iqxD

(
2ss′ cos (φ− θ)− 2

seiφ + s′e−iθ

)]
= a1

[
2 + ss′ei(φ+θ) + ss′e−i(φ+θ) + 2e2iqxD(ss′ cos (φ− θ)− 1)

seiφ + s′e−iθ

]

= a1

[
2ss′[cos (φ+ θ) + e2iqxD cos (φ− θ)]− 4ieiqxD sin (qxD)

seiφ + s′e−iθ

]
So we obtain an expression for a1:

a1 =
s cosφ(seiφ + s′e−iθ)e−iqxD

ss′[e−iqxD cos (φ+ θ) + eiqxD cos (φ− θ)]− 2i sin (qxD)
(35)

Now we plug a1, equation (35), into our expression for b1, equation (33) to obtain:

b1 = − s cosφ(seiφ − s′eiθ)eiqxD

ss′[e−iqxD cos (φ+ θ) + eiqxD cos (φ− θ)]− 2i sin (qxD)
(36)

We note that the denominator is the same as that in the expression for r in [5], so we will not modify

it, and thus denote it by “denom” in the next few steps. To obtain r, we plug our expressions for a and

b into equation (29):

r = a1 + b1 − 1 =
s cosφ(seiφ + s′e−iθ)e−iqxD − s cosφ(seiφ − s′eiθ)eiqxD − denom

denom
=

num

denom

We’ve introduced “num” to refer to the numerator of r, and we now simplify this expression:

num = s cosφ[s′e−i(θ+qxD) + s′ei(θ+qxD) − 2iseiφ sin (qxD)]

−ss′[e−iqxD cos (φ+ θ) + eiqxD cos (φ− θ)] + 2i sin (qxD)

= −2ss′ sin θ sin (qxD)(cosφ+ sinφ) + 2 sinφ sin (qxD)(cosφ+ i sinφ)

= 2eiφ sin (qxD)(sinφ− ss′ sin θ)

So finally, we arrive at an expression for r, which differs from the equation in [5] by an overall factor of

i:

r = 2eiφ sin (qxD)× sinφ− ss′ sin θ
ss′[e−iqxD cos (φ+ θ) + eiqxD cos (φ− θ)]− 2i sin (qxD)

(37)
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4.3 Transmission Coefficient for |V0| � |E|

In the limit of |V0| � |E|, we have the following simplifications:

qx ≈

√(
V0
~vF

)2

−
(
V0
~vF

)2

sin2 φ ≈
∣∣∣∣ V0~vF

∣∣∣∣
θ ≈ ky

|V0/~vF |
≈
∣∣∣∣EV0
∣∣∣∣ sinφ� 1

sin θ ≈ θ

cos θ ≈ 1

Let’s write the numerator and denominator of r using these |V0| � |E| approximations:

num ≈ 2eiφ sin (qxD)(sinφ− ss′
∣∣∣∣EV0
∣∣∣∣ sinφ)

≈ 2eiφ sin (qxD) sinφ

denom ≈ ss′[e−iqxD cosφ+ eiqxD cosφ]− 2i sin (qxD)

≈ 2ss′[cosφ cos (qxD)]− 2i sin (qxD)

Combining these and multiplying r by complex conjugate r∗ yields, in the limit of |V0| � |E|:

|r|2 =
sin2 (qxD) sin2 φ

cos2 φ cos2 (qxD) + sin2 (qxD)

So the transmission coefficient T is given by:

T = 1− |r|2 =
cos2 φ cos2 (qxD) + sin2 (qxD)(1− sin2 φ)

cos2 φ cos2 (qxD)− cos2 (qxD) + sin2 (qxD) + cos2 (qxD)

=
cos2 φ

1− sin2 φ cos2 (qxD)

We see that for qxD = nπ, T = 1 and we have perfect transmission through the barrier. Additionally,

we have this perfect transmission for φ = 0. This is the result cited in [5]. In Figure 6, we reproduce

the results from [5], plotting T as a function of incident angle φ for two specific energy E and barrier

height V0 combinations. In Figure 7 and Figure 8, below, we show plots of the transmission coefficient

(without taking the large V0 limit) as a function of incident angle φ and barrier height V0 at different

energies.
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Figure 6: Polar plots of transmission coefficients as a function of incident angle φ for barrier heights of V0 = 200
meV and 285 meV, and energy E = 83.25 meV.

Figure 7: 3D plots of transmission coefficients as a function of incident angle φ and barrier height V0 for energies
E = 0.0001, 5, 30, 80, and 150. V0 ranges from 0 to 200 meV and φ from −π/2 to π/2.
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Figure 8: 3D plots of transmission coefficients as a function of incident angle φ and barrier height V0 for energies
E = 0, -0.0001, -5, -30, -80, and -150. Again, V0 ranges from 0 to 200 meV and φ from −π/2 to π/2.

5 Hexagonal Warping: The k3 Hamiltonian for Bi2Te3

5.1 Single Barrier, Height V0, Along ΓK

5.1.1 Outside the Barrier, x < 0

Finally, we wish to turn out attention to a recently suggested additional term in the Hamiltonian for

Bi2Te3. Motivated by Angle-Resolved Photoemission Spectroscopy (ARPES) experiments on the 3D

strong topological insulator Bi2Te3, which showed a snow-flake like Fermi surface, hexagonally distorted,

Fu has suggested that this distortion is due to an additional term in the Hamiltonian proportional to

k3. Thus the entire Hamiltonian for Bi2Te3 has the form[7]:

H(~k) = v(kxσy − kyσx) +
λ

2
(k3+ + k3−)σz (38)

where k± = kx± iky. To see this “hexagonal warping” of the Fermi surface, we derive a relation between

E and k. We proceed as in Section 4, writing the Schrodinger equation with this new Hamiltonian

operating on the Dirac spinor wavefunctions and applying it to a suitable ansatz. We start by rewriting

the k3 term in the Hamiltonian in terms of kx and ky, so that we can transform them into position space

as before:

k3+ + k3− = (kx + iky)
3 + (kx − iky)3 = 2k3x − 6k2ykx

so that our Hamiltonian becomes

H(~k) = v(kxσy − kyσx) + λ(k3x − 3k2ykx)σz (39)
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Applying this Hamiltonian to the Dirac spinor

(
ψ1

ψ2

)
and making the substitution kx → −i∂x yields the

following Schrodinger system of equations for the region x < 0, where there is no added potential:

−v(∂x + ky)ψ2 + iλ(∂3x + 3k2y∂x)ψ1 = Eψ1 (40)

v(∂x − ky)ψ1 − iλ(∂3x + 3k2y∂x)ψ2 = Eψ2 (41)

We now apply this to our ansatz wavefunctions, as before. In this case, we will use the same ansatz as

in [5] and section 4.1, but we first show that this ansatz is appropriate to this new problem. We apply

the Hamiltonian to the more general ansatz, ψ1 = eikxx + re−ikxx and ψ2 = Aeikxx +Be−ikxx. Applying

(40) to the ansatz and collecting terms in eikxx and e−ikxx yields:

eikxx[E +Av(ikx + ky)− λ(k3x − 3k2ykx)] + e−ikxx[Er + vB(ikx + ky) + rλ(k3x − 3k2ykx)] = 0

−AivkF e−iφ + λk3F cos (3φ) = E and
B

r
ivkF e

iφ − λk3F cos (3φ) = E (42)

Adding these two equations and substituting v = |E|/kF yields:

Ae−iφ − B

r
eiφ = − 2E

i|E|
= 2i sgn(E) = 2s

Rearranging, we have
A

s
e−iφ − B

rs
eiφ = 2

and since e−iφ and eiφ are linearly independent and this equation holds for all φ, we obtain the relations

A = seiφ and B = −rse−iφ where s = isgn(E) (43)

Putting these expressions for A and B back into equations (42) yields the Schrodinger equations:

−ivskF + λk3F cos (3φ) = E and − ivskF − λk3F cos (3φ) = E (44)

For either of these equations, we can multiply both sides by its complex conjugate to obtain:

E = ±
√

(vkF )2 + λ2k6F cos2 (3φ) (45)

This is the result in [7]. In Figure 9, we show a constant energy contour plot of this result, much like

that in [7] and see that at low energies, the Fermi surface looks like that of a simple Dirac Hamiltonian

that we have been considering throughout the paper, but that at higher energies, we see the hexagonal

warping of the Fermi surface.

5.1.2 Inside the Barrier, 0 < x < D

We next turn our attention to the Hamiltonian inside the barrier, apply the most general ansatz, and

solve for the coefficients and qx as we’ve done in the simple Dirac case. Inside the barrier, our Schrodinger
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equations are:

−v(∂x + ky)ψ2 + iλ(∂3x + 3k2y∂x)ψ1 = (E − V0)ψ1 (46)

v(∂x − ky)ψ1 − iλ(∂3x + 3k2y∂x)ψ2 = (E − V0)ψ2 (47)

Now let’s apply our ansatz, ψ1 = aeiqxx + be−iqxx and ψ2 = ceiqxx +de−iqxx. Plugging this into Equation

(46), yields:

eikxx[a(E − V0 − λ(q3x − 3k2yqx)) + vc(iqx + ky)] + e−ikxx[b(E − V0 + λ(q3x − 3k2yqx)) + vd(iqx + ky)] = 0

−v c
a

(iqx + ky) = E − V0 − λ(q3x − 3k2yqx) (48)

−vd
b

(−iqx + ky) = E − V0 + λ(q3x − 3k2yqx) (49)

Furthermore, plugging in the ansatz to Equation (47) yields similar equations:

v
a

c
(iqx − ky) = E − V0 + λ(q3x − 3k2yqx) (50)

v
b

d
(−iqx − ky) = E − V0 − λ(q3x − 3k2yqx) (51)

From (48) and (50) we have

.c =
av(iqx − ky)

E − V0 + λ(q3x − 3k2yqx)
=

−vc(iqx + ky)

E − V0 − λ(q3x − 3k2yqx)
· v(iqx − ky)
E − V0 + λ(q3x − 3k2yqx)

so that

q2x + k2y =
1

v2
[(E − V0)2 − λ2(q3x − 3k2yqx)2] (52)

gives an expression for qx. Next, we add (48) and (49), as before in the out-of-barrier case, making the

substitutions of qx = k′F cos θ, ky = k′F sin θ, and v = |E − V0|/k′F to obtain:

c

a
e−iθ − d

b
eiθ = −2(E − V0)

ivk′F
=

2i(E − V0)
|E − V0|

= 2s′

where we’ve defined s′ = isgn(E − V0). Rearranging and noting that eiθ and e−iθ are linearly indepen-

dent, we obtain expressions for c and d:

c = aseiθ and d = −bse−iθ (53)

where of course by definition, θ = arctan (ky/qx).

5.1.3 Outside the Barrier, x > D

Lastly, we consider the region to the right of the barrier, governed by the system of Schrodinger equations

of Equations (40) and (41), and we plug in the general ansatz in this region, ψ1 = teikxx, ψ2 = ueikxx,
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since in this region there is no backward traveling wave. Using the same procedure as above, we obtain

the equations

−vu
t

(ikx + ky) + λ2(k3x − 3k2ykx)2 = E

v
t

u
(ikx − ky)− λ2(k3x − 3k2ykx)2 = E

Adding the two4 equations, as before, yields:

−u
t
e−iφ +

t

u
eiφ =

2E

ikF v
= −2isgn(E) = −2s

where we define s as before. We thus obtain an expression for u:

u = steiφ

5.2 Barrier of Height V0, Rotated by π/6 (Along ΓM)

Again, we wish to apply the same formalism as before, but now we rotate the Hamiltonian by an angle

of π/6 in k-space to examine the effect of the hexagonal warping on the barrier transmission, when the

barrier is placed at an angle to the coordinate axes. Since we wish to place the barrier displaced by π/6,

we rotate the kx and ky directions by −π/6. Our original Schrodinger equations are given by:

−v(ikx + ky)ψ2 + λ(k3x − 3k2ykx)ψ1 = Eψ1

v(ikx − ky)ψ1 − λ(k3x − 3k2ykx)ψ2 = Eψ2

We now substitute in k′x and k′y for kx and ky, where k′x and k′y are the rotated coordinates, given by:(
k′x

k′y

)
=

(
cos (−π

6 ) − sin (−π
6 )

sin (−π
6 ) cos (−π

6 )

)(
kx

ky

)
=

(√
3
2 kx + 1

2ky√
3
2 ky −

1
2kx

)

Our new Schrodinger equations become:

−vw(ikx + ky)ψ2 − λ(k3y − 3k2xky)ψ1 = Eψ1

vw†(ikx − ky)ψ1 − λ(k3y − 3k2xky)ψ2 = Eψ2

with w =
√
3
2 + 1

2 i. So we now proceed exactly as in Section 5.1, applying this to our generic ansatz

wavefunctions. We replace kx by −∂x and obtain:

−vw(∂x + ky)ψ2 − λ(k3y + 3∂2xky)ψ1 = Eψ1 (54)

vw†(∂x − ky)ψ1 + λ(k3y + 3∂2xky)ψ2 = Eψ2 (55)

(56)
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5.2.1 Outside the Barrier, x < 0

We now apply our rotated Schrodinger equations to the general ansatz, ψ1 = eikxx + re−ikxx and

ψ2 = Aeikxx + Be−ikxx. We obtain two equations (one for eikxx, one for e−ikxx) for each of the two

equations above, yielding four equations:

−AwvikF e−iφ − λ(k3y − 3k2xky) = E (57)

− b
r
wvikF e

iφ − λ(k3y − 3k2xky) = E (58)

1

A
vw†ikF e

iφ + λ(k3y − 3k2xky) = E (59)

− r
B
vw†ikF e

−iφ + λ(k3y − 3k2xky) = E (60)

Adding Equations (57) and (59) yields:

−Awe−iφ +
w†

A
eiφ =

2E

vikF
= −2isgn(E) = −2s

whence we obtain an expression for A: A = s
we

iφ. Similarly, we add Equations (58) and (60) to obtain:

B

r
weiφ − r

B
w†e−iφ =

2E

vikF
= −2isgn(E) = −2s

whence we obtain B = −r swe
−iφ.

5.2.2 Inside the Barrier

In this region, our Schrodinger equations are much the same, except we replace E with E−V0 to account

for the barrier height:

−vw(∂x + ky)ψ2 − λ(k3y + 3∂2xky)ψ1 = (E − V0)ψ1

vw†(∂x − ky)ψ1 + λ(k3y + 3∂2xky)ψ2 = (E − V0)ψ2

We now apply these to the general ansatz ψ1 = aeiqxx+be−iqxx and ψ2 = ceiqxx+de−iqxx to obtain again

four equations:

− c
a
vw(iqx + ky)− λ(k3y − 3q2xky) = E − V0 (61)

−d
b
vw(−iqx + ky)− λ(k3y − 3k2xky) = E − V0 (62)

a

c
vw†(iqx − ky) + λ(k3y − 3k2xky) = E − V0 (63)

− b
d
vw†(iqx + ky) + λ(k3y − 3k2xky) = E − V0 (64)
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Making the substitutions iqx + ky = ik′F e
−iθ and iqx− ky = ik′F e

iθ, and adding Equations (61) and (63)

yields:
a

c
w†eiθ − c

a
we−iθ =

2E

vik′F
= −2isgn(E − V0) = −2s′

whence we obtain c = a s
′

w e
iθ. Similarly, adding Equations (62) and (64) yields:

d

b
weiθ − b

d
w†e−iθ =

2E

vik′F
= −2isgn(E − V0) = −2s′

whence we obtain d = −b s′w e
−iθ. We now seek an equation for qx, which we obtain by solving (61) for c

and plugging into (63). From (61),

c = −a
E − V0 + λ(k3y − 3q2xky)

vw(iqx + ky)

and substituting this into (63) yields an expression which we can solve for qx:

q2x + k2y =
1

v2
((E − V0)2 − λ2(k3y − 3q2xky)

2)

5.2.3 Outside the Barrier, x > D

Finally, we consider the region following the barrier and apply our Schrodinger equations, (54) and (55),

to the general ansatz wavefunctions ψ1 = teikxx and ψ2 = ueikxx. We obtain now two equations (since

we no longer have the reflection terms e−ikxx):

−u
t
vwikF e

−iφ − λ(k3y − 3q2xky) = E − V0
t

u
vw†ikF e

iφ + λ(k3y − 3q2xky) = E − V0

Adding these two equations gives

vikF (
t

u
w†eiφ − u

t
we−iφ) = 2(E − V0)

whence we obtain u = t s
′

w e
iφ.

5.3 Comparison of Transmission Coefficients: Simple Dirac, k3 with Barrier along

ΓM , k3 with Barrier along ΓK

We now proceed as before, calculating r, the reflection amplitude and using it to find R and thus T ,

the reflection and transmission coefficients as a function of barrier height and incident angle for a given

energy. This is identical to the case of the simple Dirac Hamiltonian, except we use different expressions

for s and qx, as specified by the results in the preceding sections. We show plots of the transmis-

sion coefficient, T , as a function of incident angle φ for several different energies in each of the three

cases discussed: simple Dirac, k3 with the barrier along the ΓM direction (above, the rotated case),

and k3 with the barrier along the ΓK direction. In Figure 9, we display the constant energy contours
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Figure 9: Energy contour plot of the k3 Hamiltonian in the units of
√
v/λ

of the k3 Hamiltonian at which we plot the transmission in Figures 10,11, and 12. These energies,

0.2E*,0.5E*,0.8E*,E*,1.2E*,1.5E*, and 2E*, with E* = 0.23eV, as can be seen in the Figure, span the

energy range from a conic dispersion to the hexagonally warped region. At lower energies, the simple

Dirac Hamiltonian, and warped Hamiltonians with barriers along ΓK and ΓM all produce similar trans-

mission results. As we increase the energies, however, the transmission along the ΓK direction changes

due to the distorted Fermi surface.

In this independent work paper, we began with a two-dimensional topological insulator, HgTe, and

studied the effects of inversion and time-reversal breaking terms when applied to the edge. We found

that in the presence of a magnetic impurity, the edge modes do not reconstruct, but are destroyed

at the edge where the impurity is applied, opening a gap in the spectrum. We additionally extended

these results to the quasi-two-dimensional topological insulator case and visualized Dirac cones in our

simulation. We then turned our attention to the surfaces of 3D topological insulators and developed

a framework for computing transmission coefficients for a step-barrier potential. We also showed the

results of these computations for varying incident angles and barrier heights. Lastly, in this section

we have introduced, following [7], a hexagonal distortion term to the Dirac Hamiltonian and applied

the potential barrier analysis from the previous sections to this new Hamiltonian. We found that at

higher energies, where hexagonal warping is apparent, barriers along the ΓM and ΓK produce different

transmission coefficient profiles as a function of incident angle, suggesting that scattering is different

along these two different directions.
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Figure 10: Plots of transmission coefficients T as a function of incident angle φ in the simple Dirac case for barrier
heights of V0 = 0.1 eV, and energies 0.2E*,0.5E*,0.8E*,E*,1.2E*,1.5E*, and 2E*, with E* = 0.23eV.
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Figure 11: Plots of transmission coefficients T as a function of incident angle φ in the simple k3 case with barrier
along ΓM , for barrier heights of V0 = 0.1 eV, and energies 0.2E*,0.5E*,0.8E*,E*,1.2E*,1.5E*, and 2E*, with E*
= 0.23eV.
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Figure 12: Plots of transmission coefficients T as a function of incident angle φ in the simple k3 case with barrier
along ΓK, for barrier heights of V0 = 0.1 eV, and energies 0.2E*,0.5E*,0.8E*,E*,1.2E*,1.5E*, and 2E*, with E*
= 0.23eV.
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